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ABSTRACT

Moore’s law is coming to an end: processing power is not
doubling any more. To keep increasing processing power,
Graphical Processing Units (GPUs) can be used. How-
ever, the programmatic complexity of these devices stands
in the way of their adoption. A better and more paral-
lel programming model is needed. To assess the viability
of programming a GPU with a functional programming
language, a minimal subset of Haskell that compiles to
OpenCL was implemented. Using Haskell to program a
GPU made some programs more clear and concise, but
performance suffered. Especially the absence of global
synchronization of the GPU and dynamic memory allo-
cation made it harder to implement Haskell for the GPU.
However, the prototype implementation proves that it is
possible to use a high-level language to program the GPU.
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1. INTRODUCTION

Over the past few years it has been becoming more and
more clear: the magic doubling of processing power every
two years (better known as “Moore’s Law”[11]) as a result
of the doubling of transistor density is slowly grinding to
a halt. An actual doubling of transistor density has not
happened in 2 years[2]. It is clear to the industry but
also to academia that an alternative way of acquiring a
speed-up in hardware and software is needed.

The past few years GPUs have gained popularity in the
field of High Performance Computing (HPC). GPUs are
chip boards containing several hundred smaller Central
Processing Units (CPUs) that are running in parallel. A
GPU can, if properly programmed, churn through giga-
bytes of data quickly. A CPU usually takes an order of
magnitude longer because of its sequential nature. The
relatively low cost of GPUs and their promise of process-
ing power makes them attractive.

To program a GPU a low-level variant of C named OpenCL
is often used. It is flexible and effective, but it is not a
pleasant language to work with. The imperative nature of
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OpenCL does not aid its ability to deal with concurrent
execution issues such as data races and deadlocks. The
combinatorially complex problem of parallel execution and
the low-level nature of OpenCL makes it clear that pro-
gramming a GPU is hard. If a speedup corresponding to
Moore’s Law is ever to be achieved, something has to be
done about this barrier of complexity.

A possible solution to this problem is to design a functional
high-level language that compiles to OpenCL. A functional
language can help combat concurrent programming issues,
while a high-level language could aid the programmer by
giving him more expressive power. To research the viabil-
ity of such an approach, the following questions need to
be answered:

1. What problems do experts experience when using
OpenCL?

2. How can these problems be solved in a high-level
functional language?

3. What are the benefits and drawbacks of program-
ming a GPU with a functional high-level language
compared to regular OpenCL?

To answer question one I will interview experts in the
field of GPU programming to acquire problems and pat-
terns that are recurring in GPU programming. Further-
more, relevant research on GPU programming languages
and libraries will be studied. This will be helpful in de-
termining what language features are effective and what
language design choices to avoid. Combining the acquired
expert knowledge with the literature study, Hywar, a small
subset of the Haskell programming language targeting the
OpenCL platform, will be implemented as a proof of con-
cept of a high-level functional GPU programming lan-
guage. From this implementation research question two
and three can be answered.

In this paper background will be given on GPUs and the
OpenCL platform. Similar efforts on reducing OpenCL
complexity will be discussed, after which the method of
interviewing experts and the implemented language will be
explained. Then details will be given on the inner workings
of the Hywar compiler. Lastly, the interview results and
implementation details will be presented and discussed,
followed by a conclusion.

2. BACKGROUND

2.1 Graphical Processing Units

GPUs have gained popularity over the past few years. At
first they were only known for their ability to render 3D
scenes and films with crisp quality. Since august 2009,
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Figure 1. The OpenCL architecture as depicted in
[8]. In practice a compute device is usually a GPU,
a compute unit a workgroup, and a Processing El-
ement (PE) an actual processor.

the release of the OpenCL 1.0 standard, an effort has
been made to standardize the general purpose computing
power offered by GPUs. This is not the first time efforts
were made to use the computing power of GPUs for some-
thing else than rendering however. As early as 2005 and
possibly even earlier GPUs were already used for general
purpose computing, despite the absence of the OpenCL
standard|[3].

The many processors on a GPU make it a perfect fit for
highly parallel tasks such as image processing and stencil
operations. However, to fit so many processors on one
chipboard, the processors have to be less powerful and
fully-featured compared to actual AMD or Intel CPUs.
This means that sequential algorithms and tasks are quite
likely perform a lot worse when running on a GPU. The
takeaway here is that “there is no such thing as a free
lunch”: GPUs can only provide substantial speed-up if it
is used in the proper context.

2.2 The OpenCL platform

OpenCL is a flexible language, allowing implementation
of not only image processing but also complex algorithms
such as bitcoin mining and scientific simulations.

OpenCL models GPUs in an abstract way. OpenCL as-
sumes that a GPU consists of many individual “proces-
sors”, where each processor is executing the same “kernel”.
A kernel is a program executed by a GPU. The amount of
processors available is usually in the range of 100 to 500.
An extra assumption OpenCL makes is that these proces-
sors can be divided in “workgroups” of arbitrary size, as
long as the total amount of working processors is divisible
by this workgroup size. The crux of the concept of work-
groups is that while processors in the same workgroup can
be synchronized (that is, a processor can stop execution
until another processor in a workgroup has done some-
thing), processors in different workgroups cannot be syn-
chronized. This constraint allows kernels to be executed
on GPUs with varying amounts of processors, as long as
the GPU supports the workgroup size. The architecture
is visualised in figure 1.

There is one aspect in which OpenCL differs from many
other programming languages: the need for a “host lan-
guage”. In traditional languages the developer writes code
and then instructs the compiler to compile the code. The
developer is then left with an executable that is the pro-

gram the developer has written in machine-executable form.
For OpenCL this is not the case. In the context of OpenCL
the developer writes a kernel, which is then compiled to
GPU-executable form. The developer can not execute this
GPU-executable form on its own. First code has to be
written to load a compiled kernel on the GPU, load the
arguments to the kernel, and then execute the kernel. This
“kernel management” is all done in a host language. This
kernel management is also the reason why GPU program-
mers often talk about two languages: OpenCL on one side
(to program the kernel), and a host language (C, C++,
Java, Python) on the other side (to manage the kernel).

However, OpenCL is not perfect. OpenCL is the closest
a developer can get to the hardware without significant
rise in complexity of tooling and usability. It only gives
the programmer the very basic needs of a programming
language. Recursion is an example of high-level feature
not supported by OpenCL[8]. It is not a mandatory fea-
ture, but recursion can happen without the programmer
intending it. Combined with the fact that the compiler
does not warn for this, this can be a hard to debug prob-
lem. Safety is another concern. One example of this is
that array accesses in OpenCL are not checked for bound-
aries. This makes OpenCL programs vulnerable to buffer
overflows. Lastly, the usability of the OpenCL API is bad.
For a small GPU program of 15 to 20 lines, the program-
mer needs between 100 and 150 lines of overhead code to
run the GPU program and extract the results.

A possible cause of the complexity of OpenCL might be
the roots of its programming model. While OpenCL rep-
resents the underlying architecture quite well, it is still
inherently sequential. Some researchers argue that for the
power of a parallel environment to be fully utilized a new
programming model has to be created that does not de-
pend on execution order[1]. When the order of instructions
is taken away from the programming model a model that is
more akin to mathematics is the result. With functional
languages being akin to mathematics as well, functional
languages should be researched as a possible solution to
programming GPUs.

3. RELATED WORK

It is not the first time this problem is tackled. A tra-
ditional solution is to wrap OpenCL in a high level li-
brary or Domain Specific Language (DSL). Many libraries
have been written to make programming GPUs from a
host language more bearable (Boost.Compute, Data Par-
allel Haskell, accelerate, Thrust, and more). One problem
these libraries solve well is the usability part. When a
library is used, the OpenCL API is usually locked away
behind a layer of abstraction. But these libraries are also
not perfect. The abstraction layer over OpenCL can be
too thin, resulting in a complex library interface. If that
is not the case, the library is usually too high-level. This
results in a loss in flexibility, and often requires complex
marshalling of arrays to “GPU arrays” and other business.

The approach used in this research is another option: cre-
ate a programming language that encapsulates the com-
plexity of the target. Several languages have been devel-
oped that try to solve the problem that way: Futhark,
RenderScript, and many more. Three of these stand out:
SkelCL[14], Bacon[15], and Harlan[6]. Each of these lan-
guages improve upon OpenCL in their own way, but they
also each have their own shortcomings.

SkelCL is a library and domain specific language that al-
lows the programmer to easily interface with the GPU.



It simplifies the implementation of simple GPU programs
with the introduction of so called "skeletons”. This makes
SkelCL a good basis from the point of view of usability.
However, the language with which the skeletons are pro-
grammed is very spartan. It is useful for simple programs,
but more complex programs still require OpenCL.

Bacon is a programming language that compiles to OpenCL.
At the same time it also provides an API to interface
with and execute the Bacon programs in C++. While
Bacon improves OpenCL on both the language and us-
ability front, it did not experience widespread adoption.
One could argue that this proves that a high-level lan-
guage targeting OpenCL is not the solution programmers
are looking for. In my opinion, Bacon is just ahead of its
time.

Harlan is a dialect of Scheme, geared towards interfacing
with the GPU. In the spirit of Scheme it provides a mini-
malist programming language, extended with the “kernel”
keyword to allow parallel execution on the GPU. While
Harlan is a functional language, it runs in a restricted en-
vironment, making it not immediately obvious how the
code can be interfaced with a C4++ or Haskell program.
With Scheme being well-known for being a language useful
for teaching, Harlan scores very high on the accessibility
scale.

These three languages are relevant because they improve
upon OpenCL in a way that this research is also trying to:
by providing an abstraction layer over OpenCL that al-
lows the programmer to reason more abstractly and more
easily. Especially Harlan is successful in this regard, as
functional languages are often seen as the pinnacle of a
way of programming in an abstract manner. However, us-
ability is also important, and that is where SkelCL & Ba-
con prevail. This research builds upon the progress made
in the Harlan language, while taking as much as possible
from the usability of SkelCL & Bacon.

4. METHOD

To answer the research questions experts were interviewed
and a programming language was implemented. In this
section the reasoning behind interviewing will be explained,
as well as the reasoning behind the choices for the pro-
gramming language implementation.

4.1 Expert interviews

Experts have been interviewed to find the most important
problems in the field of GPU programming. The main rea-
soning behind this is that experts first and foremost have
had the proper time to actually do substantial amounts of
GPU programming. This gave them the chance to expe-
rience the shortcomings of GPU programming first hand.
Furthermore these experts are not only experts in the pro-
gramming of GPUs, but they are also experts of their do-
main. They do not have unrealistic expectations of the
capabilities of the GPU platform: if they say something
is tedious and should be easier it is likely that this is a
widespread problem in the field.

The experts were asked various questions about their ex-
perience with GPU programming, recurring programming
patterns, and how time was spent on different program-
ming activities (programming, debugging, optimization,
etc.). The actual questions used to lead the interview are
visible in appendix A.

4.2 The Hywar language specification
To determine the limitations and strengths of the OpenCL
platform as a target for a functional language I have im-

plemented a functional language: Hywar. For the most
part it is not unlike Haskell. It has functions, variables,
if-statements, and lists. There are a few caveats however.

4.2.1 General concerns

I have chosen Haskell to implement the compiler because
Haskell is generally perceived to be a good environment to
program a compiler in. This is mostly because Haskell has
pattern matching and support for deep recursion, which is
useful in compiler construction.

C++ was decided to be the host language target for the
Hywar compiler. The reason for this being that while it
is high-level (it has high-level data types such as lists and
sets), it still interoperates with many programming lan-
guages. This ensures that the programs produced by the
compiler are usable in many contexts and architectures.

It was determined that Hywar has to be based on Haskell.
This has a few advantages. Firstly, the implemented pro-
grams will seem familiar to a large portion of the audience
because Haskell is widely known. Secondly, my supervisor
Jan Kuper already had a parsing framework for Haskell
available, which greatly accelerated the process of imple-
mentation.

4.2.2  Implicit and explicit parallelism

In programming language design there are two ways to im-
plement parallelism: implicit and explicit. Implicit means
that in no way the developer indicates where or how paral-
lelism takes place. The developer merely indicates which
computations and functions should happen, and the com-
piler then analyses the code for possible opportunities for
parallelism. Explicit means that the developer specifically
says which code he wants to run in parallel. The devel-
oper can do this via specialized keywords, or by annotating
regular code. Implicit parallelism is a more higher-level
approach and restricts the developer less. It does how-
ever place a burden on the compiler to figure out what
to parallelise. Explicit parallelism is more low-level, and
places the burden on the developer to correctly indicate
what to parallelise. In the context of compiling Haskell to
OpenCL, both alternatives were considered.

The explicit way, as shown in listing 1, is very close to
standard Haskell. In this case, the code generated for the
main function would be compiled to OpenCL C and exe-
cuted almost “in verbatim” on each processor of a GPU.
The only difference between each individual execution is
that getGloballd returns a different ID for each distinct
processor. Processor 0 gets global ID 0, processor 1 gets
global ID 1, and so on. That way, each processor can
search for a different prime. However, given this model, it
is for example not possible to filter elements from an array.
Extra custom notation is needed to signal this intent.

The implicit way, as shown in listing 2, is actually standard
Haskell. While listing 2 is more concise and understand-
able than listing 1 the compiler not only needs to do more
work (what part of this code has to be parallelised?) but
the implementation of the filter operation is also left to
the compiler. While in a functional context this is usually
desired, it can be seen as a limitation.

For Hywar explicit syntax was chosen due to the complex
data flow analysis needed for implicit parallelism. This
also made implementation feasible within a short time
frame. See listing 3 for an example of the chosen syntax.

4.2.3 Hywar program structure

A Hywar program is basically a Haskell 1let statement, as
can be seen in listing 3. The statement first has a series



——@filter \z —> z /= —1) main
main :: [Int] —> Int
main ps
| isPrime prime = prime
| otherwise = —1
where
prime = ps!!( getGloballd 0)
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Listing 1. Naive prime finding program in concep-
tual Haskell with explicit parallelism

1 main :: [Int] —> [Int]
> main ps = filter isPrime ps

Listing 2. Naive prime finding program in Haskell
with implicit parallelism

of variable definitions and types, followed by the keyword
in, after which the actual “body” expression to be calcu-
lated is located. In this body expression only variables
and functions defined in the let statement can be used.

The variable definitions are used for two purposes in Hy-
war. The first purpose is defining numerical constants or
functions, such as days0fTheWeek = 7 or multiplyByFive
= \x -> x * 5 respectively. The second is to define in-
puts to be supplied at program execution. An example of
this is in listing 3, where ps :: [Int] signifies that ps is
a list of integers to be supplied at program execution.

The type system of Hywar is vastly simplified compared
to Haskell: every variable is either a list of integers, an
integer, or a function taking a certain amount of integers
as arguments and returning an integer. Variables can only
be lists if they are inputs to the GPU program (such as
the ps in listing 3).

The body expression must be a function call. The follow-
ing functions can be called: filter, reduce, map, zipWith,
or plow. These are all similar to their cousins in Haskell,
with a few exceptions. filter does the same as the fil-
ter in Haskell, except it might change the ordering of the
results. reduce is similar to foldll. map and zipWith do
exactly the same as the Haskell versions. plow is the same
as scanll in Haskell.

S. HYWARIMPLEMENTATION DETAILS

The Hywar compiler consists of four phases. These four
phases turn a textual representation of a Hywar program
into a C++ header and source file containing one func-
tion. This function has arguments in the same order as
specified by the Hywar program, and when called executes
the Hywar program. The four compiler phases are (in or-
der of execution): lexing and parsing, tree transformation,
OpenCL kernel generation, and C++ function generation.

The Hywar language implementation source is located at
https://github.com/bobismijnnaam/hywar. It is licensed
under the liberal open source MIT license.

See listing 4 and listing 5 for an example of generated

let
ps : [Int]
in

W oN e

filter isPrime ps

Listing 3. Naive prime finding program in Hywar

OpenCL code from a Hywar program.
5.1 Lexing & Parsing

This phase turns a textual representation of a Hywar pro-
gram into an expression tree representation. The lexing
and parsing phase was implemented by Jan Kuper. The
parser already parsed a big subset of Haskell, so it was
trivial to make it parse Hywar, which is a tiny subset
of Haskell. This whole phase is wrapped in the function
showExpr in the file Graphviz.hs.

5.2 Tree transformation

The tree transformation phase transforms the Haskell ex-
pression tree generated by showExpr into an imperative ex-
pression tree that is easily convertible into OpenCL code.
This is done in four separate steps, where each step pro-
duces a new tree that is slightly different from the old
tree. They are the following (in order of execution): func-
tion application to function calls, lambda lifting, global
variable typing, and local variable typing. This phase is
executed by the function doTaal in the file Compiler.hs.

Function application to function calls.

In the Haskell expression tree function applications are
nested. This means that if there is a function that takes
two arguments, the second argument is applied to the
function resulting from applying the first argument to a
function. This makes sense in the functional paradigm,
but in an imperative language there is no function appli-
cation. Instead, functions are called: arguments are set
somewhere in memory, and a jump is made to the func-
tion. Function application nodes in the Haskell expression
tree are “flattened” to a function call to represent the un-
derlying structure properly.

Lambda lifting.

In a Haskell expression tree a function can be passed to
another function by means of a lambda. In OpenCL func-
tions cannot be passed to other functions, so the Haskell
expression tree cannot be directly translated to OpenCL|[8].
I solve this by doing lambda lifting[7]. This “lifts” each
lambda expression into each own global function defini-
tion. A reference to the global function definition is then
hard-coded into the expression tree. Since now only the
reference to the function definition is passed, the tree is
convertible to OpenCL.

Global variable typing.

The global variable typing step assigns types to variables
and function definitions.

Local variable typing.

Type information from the previous step is used here to
assign types to functions calls and variables used in ex-
pressions.

5.3 OpenCL kernel generation

In this phase the kernel that will be executed by the GPU
is generated. It starts out with a “boilerplate kernel” based
on which body expression is used. To this boilerplate ker-
nel are then added various functions that are defined by
the user in the Hywar program. Lastly, this phase also
leaves a few blanks in the kernel. These blanks will be
filled in by the host language. These blanks are the kernel
arguments and the lengths of various intermediate results.
This approach is called “Just-In-Time specialization”, pio-
neered for GPUs by the Bacon programming language[15].



1 let

2 ps : [Int],

3 isEven = \x —> (mod x 2) ==
4 in

5 filter isEven ps

Listing 4. A Hywar program that filters all even
numbers from a list.

1 int mod(int a, int b) {
2 return a % b;

s }

s int isEven(int);

s int If_Cej8auY3yMX(int);

7

s _constant int ps[{! ps_length}] = {!ps_contents};
9

10 int isEven(int v1) {

11 return If_Cej8auY3yMX(v1);
12}

13

12 int If_Cej8auY3yMX(int x) {

15 return (mod((x), (2))) == (0);
16

17

1z kernel void GPUMonad(_global int xout, _global int xcount) {

1o if (isEven(ps[ get_global_id (0)])){

20 out[atomic_inc(count)] = ps| get_global_id (0)];
21 }

22 }

Listing 5. An OpenCL kernel generated by the
Hywar compiler. The {!...} segments are to be
replaced with constants at run-time

5.4 C++ function generation

The last phase generates wrapper code in the host lan-
guage that runs the kernel generated in the previous func-
tion. This wrapper code consist of a header and a source
file in the C++ language and contains one function. When
this function is called the blanks in the generated kernel
are filled in, the kernel is compiled, the kernel arguments
are loaded, the kernel is run, and the results are extracted
and returned to the caller. The only dependencies of the
generated function is that the C++ compiler links against
the OpenCL SDK.

6. RESULTS

6.1 Expert interviews

Four experts were interviewed about their opinions of the
programmability of graphics cards. The interviewed ex-
perts were (in no particular order): Kees Lemmens (Uni-
versity of Delft), Saeed Darabi (University of Twente), and
Henk Mulder (University of Twente). One expert wished
to remain anonymous. Three out of four experts preferred
using CUDA to OpenCL in their day to day work. In
summary, their responses can be divided in roughly three
categories: language features, optimization, and usability
versus performance.

Language features.

Language features are all features that should be provided
by the language natively or via a standard library. Func-
tional patterns such as reduce and map are apparent and
useful in GPU programming. Developers already benefit
from premade functional patterns packaged in libraries,
so developers will benefit from a language with these pat-

terns built-in. Automatic or low-effort scalability to more
than one machine is a very desirable feature for a library
or language to have. Examples of this are OpenMPI and
Apache Hadoop. Functional features such as abstract data
types (e.g. sum- and product types) and high-level data
structures (e.g. maps, trees) are not used very often. And
in the case that they are, the experts often prefer im-
plementing them themselves for the sake of performance.
The experts also had the experience that the absence of
dynamic memory allocation is not a problem. In the cases
that it is a problem, it can be solved by allocating memory
before the kernel starts. Lastly, an extensive standard li-
brary for GPU programming was not deemed very useful.
When the GPU feature landscape settles it might become
a possibility.

Optimization.

The most notable and hard to avoid bottleneck in GPU
programming is memory management. This encompasses
the transfer of data to and from GPU memory. Automated
solutions for this problem exists, but they are still very im-
mature. These solutions are either too intrusive for the OS
or they transfer too much useless data. Another problem
of almost equal importance is the fluctuating landscape
of GPU features and architecture. Features and archi-
tectures change often and quickly in GPU programming,
which makes it very hard to optimize a program for more
than one GPU. Different GPUs often have different fea-
tures and strengths, so programs optimized for different
GPUs look very different from each other. This makes a
GPU program either slow and comprehensible or fast and
incomprehensible.

Usability versus performance.

In the case of beginners getting a proper GPU program-
ming environment up and running and debugging GPU
programs costs the most time. In the case of experts op-
timization of a GPU program costs them the most time.
Experts say that while having the choice between usability
and performance would be nice they would always prefer
performance. Hard to debug code is only a minor nui-
sance and perfectly acceptable. The complexity of GPU
programming is a double-edged sword: while on one hand
it is difficult to pull off, the reward of getting a GPU pro-
gram right is worth it. On the whole experts mostly agree
that the degree of complexity involved in a GPU program
is higher than it should be. There definitely is room for a
technology that would allow easier GPU programming in
exchange for performance, if only to help beginners start
out with GPU programming.

6.2 The Hywar language implementation
All in all the implementation of the Hywar specification
was a success. As expected from the implementation pro-
cess the following key insights were derived.

6.2.1 Performance

One of the more notable and distinct insights derived from
the Hywar implementation is its performance. Even though
it is a prototype built in relatively short time, the perfor-
mance should still be taken into account. As depicted in
figure 2 a Hywar implementation of the benchmark runs
about a hundred times slower than a sequential C++ im-
plementation of the benchmark. The benchmark consists
of five example programs running on a variable amount of
data, with each program using one of the body function
calls (zipWith, plow, etc.).
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Figure 2. Runtime of the benchmarks made with
Hywar (executed in parallel on the GPU) com-
pared againsts benchmarks made in C++ (exe-
cuted sequentially on the CPU).

Program Hywar | OpenCL
filter (6003) 5 20
reduce (6004) 5 32
map (6005) 6 19
plow (6006) 5 32
zipWith (6007) 6 19

Table 1. Lines of code in Hywar compared to lines
of code in OpenCL generated by the Hywar com-
piler. The numbers 6003-6007 correspond to the
example programs in the benchmark.

The functions used in each program were very simple (check-
ing if the number is a multiple of 2, adding two numbers
together, etc.), while the input arrays grew towards the
size of 100.000 elements.

6.2.2 Usability

An informal way of comparing two programming languages
is looking at the lines of code used for a program imple-
mented in both languages. This metric is shown for Hywar
and OpenCL generated by Hywar in table 1.

6.2.3 Implementation difficulties

While the implementation of the Hywar compiler was suc-
cessful, not every feature translated directly from the Hy-
war specification to an OpenCL implementation. The first
problematic feature encountered that lead to the removal
of the feature from Hywar was the List data type. While
Lists form the foundation of many Haskell programs, their
ability to be sized flexibly made it very hard to implement

them in OpenCL. The removal of Lists made Hywar a lot
less powerful than it could have been, but it did make
implementation feasible in the time frame of this research.

Another problem that lead to a small addition to the Hy-
war specification was the “stability” of filter: the guar-
antee that the order of filtered elements does not change.
The Hywar implementation of filter uses an atomic incre-
ment to keep track of filtered elements. While this makes
it possible to run the filter in parallel, it does allow the
filter to be executed in any order. Retaining the origi-
nal order of the elements would most likely require global
synchronization. This is not available at the time of im-
plementation, so the stability guarantee was removed.

Lastly, when reduce and plow were implemented similar
problems with global synchronization were encountered.
Since there was not enough time to solve this problem op-
timally the Hywar compiler cheats and supplies a partially
sequential implementation. While the implementation of
reduce is still theoretically faster than a sequential reduce,
the implementation of plow is definitely slower than a se-
quential plow. This is because plow is implemented by first
letting each workgroup do a plow on a portion of the input
list, and then letting one processor do a global plow on the
whole input list using the intermediary results. While this
does employ each processor to justify calling it a GPU im-
plementation, it is certainly slower than just doing a plow
on the CPU.

7. DISCUSSION

7.1 Interviews

While the response of the experts was not entirely uniform,
overall the idea that there is room for a high-level lan-
guage targeting OpenCL was present. This language does
not necessarily have to be functional; the experts were im-
partial to which paradigm it should be based on. Possibly
future research could look at even more paradigms in the
context of GPU programming besides imperative[15] and
functional. Another insight the experts agreed upon was
that in HPC there probably is not much use for such a
language. In a domain where every ounce of performance
has to be squeezed from the hardware even the overhead
of a very good compiler is too much.

However, in a domain where a two or three times speed-
up instead of a forty times speed-up is enough the lan-
guage can still be effective. An application that comes to
mind is quick prototyping of GPU-accelerated programs.
The easy and quick implementation of an algorithm in Hy-
war can give an outline of the possible performance gains
that can be achieved with a pure OpenCL implementation.
Portable efficiency can also be approached with a high-
level language, something that is non-existent currently. A
compiler can optimize programs for specific GPUs and em-
ploy “rule of thumbs” (workgroup sizes, picking the right
data types, etc.) that are hard for the developer to keep
track of. While the experts believe that at the moment the
GPU landscape is too chaotic to keep track of all these rule
of thumbs, an effort can still be made. Research could be
conducted to categorize characteristics of various GPUs.

kernel void GPUMonad(_global int xout, _global int *count) { Above all I believe that as the GPU landscape will stabi-

if (isPrime(ps[ get_global_id (0)])) {
out[atomic_inc(count)] = ps[ get_global_id (0)];
}

}

Listing 6. An OpenCL kernel that filters all primes
from a list. The definition of isPrime is omitted.

lize this benefit will keep on growing.
7.2 The Hywar language implementation

Lists.

One of the major problems when implementing Hywar was
the inability for functions to produce flexibly sized lists.



This seems like a hard problem to tackle with just static
analysis, especially with the presence of functions like fi1-
ter. Earlier research has evaluated a Kernel Memory Al-
locator (KMA), proving that it is possible to have some
form of dynamic memory allocation on the GPU[12]. A
drawback about this KMA however was that it was slow.
In Hywar, lists mostly appear in a per-thread context.
Therefore I think that the KMA should be re-evaluated in
the context of local or maybe even private memory. While
there is not much private and local memory available (4kb
and 64kb respectively, [10, 9]), they are a lot faster than
global memory. This could make the KMA useful outside
debugging contexts.

Body expressions.

Another major problem was the implementation of the
body expressions filter, reduce, and plow, in the absence
of global synchronization. Research is already being done
on that matter. For example, using StreamScan[13] a plow
function could be implemented that is actually faster and
more efficient than its sequential implementation. Fur-
thermore, if more global synchronization primitives be-
come available research has to be done if these can be
used to implement the body expression more efficiently,
such as a parallel filter described in [5]. Research can
also be done on the feasibility of using multiple kernel calls
for global synchronization. While this is mostly believed
to incur too much of a performance penalty, it might still
be an acceptable alternative in some cases.

Runtime performance.

The runtime performance of the Hywar benchmark com-
pared to the C++ benchmark is worrying at first sight.
However, it underlines that for a GPU implementation
to be faster than its sequential version, it should either
have very low memory requirements or be a very compute-
intensive algorithm. If a more complex function would
have been used in each program (like a Fourier transform
or a prime finding function), Hywar performance might
have been on par with a sequential implementation.

Usability.

When a Hywar program is compared to a program gen-
erated by the Hywar compiler the advantages from a Hy-
war program are immediately clear (see table 1). Most
of the lines of code in the generated OpenCL program
come from the aggregation step at the end (e.g. reduce
or plow). For bigger programs this overhead might be in-
significant, but in the benchmarks it is dominant. I also
argue that a Hywar program is clearer than its OpenCL
version. This is not only because of the simplicity of the
Hywar language, but also because of the more high-level
semantics attached to its constructs. To illustrate this,
a hand-written OpenCL version of listing 3 is shown in
listing 6.

When discussing the translation from high-level Haskell to
low-level OpenCL, the Hywar compiler takes care of nu-
merous details: synchronization between processors, final
aggregation of the data, and other tasks that are hard to
get right. However, there is more to running a GPU pro-
gram than only writing it. To get a GPU program to run
a lot of bookkeeping has to be done in the host language:
buffers have to be allocated, sources have to be compiled,
errors have to be checked, and much more. While this
complexity is not visible in table 1, I think this additional
complexity is non-negligible.

A developer using OpenCL either has to do this bookkeep-
ing manually or do the bookkeeping aided by a library.
Hywar solves this problem by packing all the individual
bookkeeping into one function the developer can call. The
function takes care of compiling the kernel, error handling,
the execution of the kernel, the extraction of the results,
and all the glue code in-between. This reduces code clut-
ter, and allows the developer to spend time on the correct-
ness of his program. The way of solving this problem is
heavily inspired by the Bacon programming language[15].
This is a very powerful way of encapsulating complexity
and I therefore advice other researchers to try and incor-
porate this structure into their languages and libraries.

Implicit versus explicit parallelism.

Lastly, while Hywar can be used to program GPUs, it is
still an explicitly parallel language. For a high-level lan-
guage implicit parallelism is desired. Research done on
data flow analysis (such as [4]) can reduce the complexity
of determining what part of a program is a candidate for
parallelisation, and how it should be parallelized. Ideally,
such a data flow analyser would analyse regular Haskell
code, and replace parallelisable parts with Hywar kernel-
let expressions. This can be a very interesting direction
of research. Research should also be done on how expres-
sions can be collapsed into other expressions. For example,
in the expression fold addTuple O (zipWith xs ys) the
zipWith does not have to finish before the fold can start.
It only has to turn two values into a tuple, after which
the tuple can be passed to the fold function. This can
be done in parallel, but the compiler has to “collapse” two
functions into one. This is possibly also in the domain of
data flow analysis.

8. CONCLUSION

In this research experts were interviewed for their experi-
ence with GPU programming. From the results it is clear
that experts spend the most time on GPU specific opti-
mization of a GPU program. Beginners have more trou-
ble with getting the GPU environment up and running.
Experts think a high-level language cannot be efficient
enough for HPC. They would also like the GPU feature
landscape to stabilize. A high-level language could reduce
the time spent on optimization by having deep knowledge
and rule of thumbs for GPUs. The high-level language
could also provide a consistent platform to reason about.

Based on the expert suggestions the high-level functional
language Hywar was designed and implemented. The ben-
efits of a functional high-level GPU language is that code
is shorter and clearer, and that the developer does not
have to deal with the complex OpenCL API. Its drawback
is that it is less flexible and that there is a loss of per-
formance. Especially the absence of global synchroniza-
tion and dynamic memory allocation can make it hard to
implement an efficient and powerful high-level language.
More research has to be done to make trivial GPU pro-
grams faster than their CPU counterparts. However, the
prototype proves that a high-level language to program
GPUs in is definitely a feasible possibility. All in all, one
thing is certain: with enough research a free lunch is on
the horizon.
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APPENDIX

A.

1.

INTERVIEW QUESTIONS

What is your background?

10.

11.

12.

. For what kinds of tasks do you use OpenCL (for

example, certain kind of image processing, or spe-
cific scientific simulations, or something entirely dif-
ferent)?

. What takes the most time when making a GPU pro-

gram?

. Was it often a problem that recursion is not possible

in OpenCL? How was this problem dealt with?

. Was it often a problem that dynamic memory alloca-

tion is impossible during executino of a kernel? How
was this problem dealt with?

. Which datatypes are missing in OpenCL? In what

context would you use these missing datatypes? (I
mean types in two ways: abstract “types”, like sum
types, tuples, etc. Or more concrete types: hashmaps,
sets, etc.)

. What kind of functionality would you like to be in a

“standard library” for OpenCL? (Better arrays, for-
each, standardised arithmetic functions e.g. min/-
max/cos, etc.)

What kind of “boilerplate code” repeats itself often
in projects, but is hard to encapsulate in a function/-
class/library?

What kind of programmingpatterns/structures is re-
curring in GPU programs? (For example, a kernel
that applies a stencil function to an image, a kernel
that maps/folds a function on a range of elements, or
something entirely different)

Does it happen often that multiple kernel invocations
occur on the same data? What do you think of the
performance impact?

Are there bugs that often appear, even though there
is a well-known remedy for it?

What is the coolest thing you’ve used OpenCL for,
and why?



